

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Engenharia Mecânica

PLANO DE ENSINO

Em caráter excepcional e transitório, para substituição do ensino presencial pelo ensino não presencial, enquanto durar a pandemia do novo coronavírus (COVID-19), em atenção à Portaria MEC N° 544, de 16 de junho de 2020, e à Resolução Normativa N° 140/2020/CUn, de 21 de julho de 2020.

EMC5404 – Transmissão de Calor II

1) Identificação

Carga horária: 54 horas-aula, das quais: Teóricas: 54 horas-aula.

Turma: 06203A

Nome do professor: Jader Riso Barbosa Junior, Email: jrb@polo.ufsc.br

Período: 1º semestre de 2020

2) Cursos

203 Engenharia Mecânica

3) Requisitos

Engenharia Mecânica (203): EMC5407 e EMC5417

4) Ementa

Equações governantes da convecção; conceito da camada limite; efeitos da turbulência; solução de blasius; correlações para escoamentos externos; escoamentos internos; correlações; convecção natural; equações governantes; correlações; modos de ebulição e condensação; correlações, trocadores de calor.

5) Objetivos

Geral:

Apresentar as noções básicas de transmissão de calor por convecção, com foco na interpretação de fenômenos físicos e no desenvolvimento de capacidades de solução de problemas analíticos e de projeto térmico.

Específicos:

- 1. Apresentar os conceitos fundamentais da transmissão de calor por convecção com e sem mudança de fase.
- 2. Capacitar o aluno a analisar situações de complexidade básica, abstraindo, modelando e implementando soluções para problemas com relevância e aplicação prática.
- 3. Desenvolver noções básicas de projeto térmico de equipamentos.

6) Conteúdo Programático

- 1. Fundamentos da Convecção [8 horas-aula]
 - 1.1. Mecanismos físicos e modos de convecção
 - 1.2. Lei de Resfriamento e coeficiente de transferência de calor
 - 1.3. Camada limite hidrodinâmica e térmica
 - 1.4. Equações da camada limite
 - 1.5. Parâmetros de similaridade
 - 1.6. Analogias da camada limite
- 2. Convecção Forçada: Escoamentos Externos [8 horas-aula]
 - 2.1. Definição e geometrias básicas
 - 2.2. Camada limite laminar em placa isotérmica; correlações
 - 2.3. Transição e turbulência
 - 2.4. Cilindro em escoamento cruzado
 - 2.5. Esferas
 - 2.6. Feixes de tubos
- 3. Convecção Forçada: Escoamentos Internos [8 horas-aula]
 - 3.1. Definição e geometrias básicas
 - 3.2. Considerações fluidodinâmicas
 - 3.3. Considerações térmicas e temperatura média de mistura
 - 3.4. Condições de contorno
 - 3.5. Balanço de energia e soluções para escoamentos laminares desenvolvidos
 - 3.6. Entrada térmica em escoamento laminar
 - 3.7. Escoamentos turbulentos
- 4. Convecção Natural [8 horas-aula]
 - 4.1. Definições e considerações físicas
 - 4.2. Equações da convecção natural
 - 4.3. Análise de ordens de grandeza e similaridade
 - 4.4. Solução da camada limite laminar em placa vertical
 - 4.5. Efeitos da turbulência na convecção natural
 - 4.6. Correlações: placas inclinadas e horizontais
 - 4.7. Cilindro horizontal e esferas
 - 4.8. Canais entre placas paralelas
 - 4.9. Cavidades
- 5. Ebulição e Condensação [7 horas-aula]
 - 5.1. Definições e terminologia
 - 5.2. Análise dimensional
 - 5.3. Ebulição em vaso (Curva de Nukiyama)
 - 5.4. Regimes de ebulição nucleada e correlações
 - 5.5. Fluxo de calor crítico e ponto de Leidenfrost
 - 5.6. Ebulição e película
 - 5.7. Condensação e gotas e em película
 - 5.8. Solução de Nusselt
 - 5.9. Correlações para condensação laminar em ondas e turbulenta
- 6. Trocadores de Calor [7 horas-aula]
 - 6.1. Classificação de trocadores de calor

- 6.2. Geometrias básicas
- 6.3. Soluções fundamentais (arranjos de correntes paralelas e contra-corrente) e LMTD
- 6.4. Método da efetividade-NUT
- 6.5. Outras geometrias

7) Metodologia

Os aspectos teóricos da disciplina serão abordados ao longo do semestre em aulas expositivas, mesclando atividades síncronas e assíncronas. Com relação à combinação dessas duas atividades, esclarece-se o seguinte:

- Haverá uma breve revisão dos tópicos 1.1 a 1.4 da disciplina, pois esses já haviam sido abordados antes da suspensão do semestre.
- As atividades assíncronas serão disponibilizadas através do MOODLE, com o suporte de material de apoio em meio digital.
- Haverá 10 aulas síncronas, nas datas descritas no cronograma, com o objetivo de resolver exercícios e sanar dúvidas.
- As aulas síncronas ocorrerão no horário oficial da disciplina.
- O link para as aulas síncronas será fornecido no MOODLE.
- O atendimento individual para sanar dúvidas ocorrerá em encontros síncronos, nas datas e formas descritas no MOODLE e no Cronograma detalhado abaixo.

8) Avaliação

Ocorrerá através de 3 (três) avaliações, a saber: 3 provas (P1, P2 e P3). A média final (MF) será calculada pela média aritmética destas avaliações:

$$MF = (P1 + P2 + P3) / 3$$

Conforme parágrafo 2º do artigo 70 da Resolução 17/CUn/97, o aluno com frequência suficiente (FS) e média final no período (MF) entre 3,0 e 5,5 terá direito a uma nova avaliação ao final do semestre (REC), sendo a nota final (NF) calculada conforme parágrafo 3º do artigo 71 desta resolução, ou seja: NF = (MF + REC) / 2.

Caso o aluno não compareça a uma avaliação, será realizada uma prova de reposição no final do semestre, entre a P3 e a REC. Esta prova cobrirá todo o conteúdo da matéria e sua nota substituirá a nota da prova a que o aluno faltou.

Com relação à aplicação das avaliações e à frequência, esclarece-se o seguinte:

- As avaliações ocorrerão *online*, atendendo a Resolução Normativa 140/2020/CUn.
- As avaliações constarão do Cronograma, e serão detalhadas, registradas e divulgadas no MOODLE.
- A frequência suficiente ao curso é obrigatória. A frequência será registrada pelo docente, ou pelo próprio aluno, em cada acesso às aulas síncronas, utilizando o registro de frequência do MOODLE. O aluno também poderá ser requisitado a registrar frequência no acesso às aulas assíncronas. Para ter direito a fazer a prova REC, o aluno deverá ter atingido 75% de frequência nas aulas síncronas.

9) Cronograma

- 1. As aulas síncronas serão realizadas às segundas-feiras, entre 16h20min e 18h00min, via aplicativo BigBlueButton na Plataforma MOODLE.
- 2. As avaliações *online* serão realizadas nos dias 05/10 (P1), 09/11 (P2) e 07/12 (P3), com início às 16h00min e término às 18h30min. A REC será realizada em 14/12 também de 16h00min às 18h30min. A Prova de Reposição será realizada em 09/12, de 16h00min às 18h30min. Todas as avaliações serão realizadas via MOODLE.
- 3. As avaliações serão individuais, com consulta livre ao material disponibilizado no MOODLE. O cronograma detalhado da disciplina é apresentado abaixo, em conformidade com a Resolução Normativa 140/2020/CUn.

Semana - Dia	Atividade síncrona	Conteúdo	Atividade assíncrona	Conteúdo
1 - 31/8	Sim (aula)	1.1 a 1.2	Sim	1.1 a 1.3
1 - 2/9	Não	-	Sim	1.3 a 1.4
2 - 7/9	Feriado	-	Feriado	-
2 - 9/9	Sim (atendimento)	1.3 a 1.4	Sim	1.4
3 - 14/9	Sim (aula)	1.4 a 1.6	Sim	1.4 a 1.6
3 – 16/9	Não	-	Sim	2.1 a 2.2
4 - 21/9	Sim (aula)	2.2 a 2.3	Sim	2.3 a 2.5
4 - 23/9	Sim (atendimento)	2.3 a 2.5	Sim	2.5 a 2.6
5 - 28/9	Sim (aula)	2.5 a 2.6	Sim	Revisão P1
5 – 30/9	Sim (atendimento)	Revisão P1	Sim	3.1 a 3.2
6 - 5/10	Não	-	P1	Caps. 1 e 2
6 - 7/10	Não	-	Sim	3.2 a 3.4
7 - 12/10	Feriado	-	Feriado	-
7 - 14/10	Sim (atendimento)	3.1 a 3.4	Sim	3.4 a 3.5
8 - 19/10	Sim (aula)	3.5 a 3.7	Sim	3.5 a 3.7
8 - 21/10	Não	-	Sim	4.1 a 4.3
9 - 26/10	Sim (aula)	4.1 a 4.4	Sim	4.3 a 4.6
9 - 28/10	Sim (atendimento)	4.3 a 4.6	Sim	4.6 a 4.9
10 - 2/11	Feriado	-	Feriado	-
10 - 4/11	Sim (aula)	4.6 a 4.9	Sim	Revisão P2
11 – 9/11	Não	-	P2	Caps. 3 e 4
11 – 11/11	Não	-	Sim	5.1 a 5.3
12 – 16/11	Sim (aula)	5.1 a 5.6	Sim	5.3 a 5.6
12 - 18/11	Não	-	Sim	5.7 a 5.9
13 - 23/11	Sim (aula)	6.1 a 6.3	Sim	6.1 a 6.3
13 - 25/11	Sim (atendimento)	5.7 a 5.9	Sim	6.3 a 6.4
14 - 30/11	Sim (aula)	6.3 a 6.5	Sim	6.5
14 - 2/12	Sim (atendimento)	Revisão P3	Sim	Revisão P3
15 - 7/12	Não	-	P3	Caps. 5 e 6
15 - 9/12	Não	-	Reposição	Tudo
16 - 14/12	Não	-	REC	Tudo
16 – 19/12	-	-	-	-

10) Bibliografia Básica

- Livro texto: "A Heat Transfer Textbook", LIENHARD, J.H. & LIENHARD, J.H., 5th Edition, Phlogiston Press, 2019. Uma cópia digital do livro pode ser obtida em: https://ahtt.mit.edu.
- Os slides e os vídeos elaborados para esta disciplina, em conjunto com o livro texto, serão suficientes como fonte de referência para o aluno estudar, aprender e se preparar para as avaliações.
- Os slides serão disponibilizados no ambiente MOODLE da disciplina. Os vídeos serão disponibilizados no YOUTUBE, sendo os links destes informados através do MOODLE.
- Solicita-se que os vídeos não sejam enviados para outras pessoas, diferentes daquelas matriculadas nessa disciplina e turma, com o risco de ferir direitos autorais.

11) Bibliografia Complementar

- Fundamentos de Transferência de Calor e de Massa, INCROPERA, F.P., DEWITT, D.P., BERGMAN, T.L., LAVINE, A.S., 6^a Ed., LTC, 2008 (7a Ed. 2014 Bergman, Lavine, Incropera, Dewitt).
- Transferência de Calor e Massa: Uma Abordagem Prática, ÇENGEL, Y.A., GHAJAR, A. 4a Ed., McGraw-Hill, 2012.