

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Engenharia Mecânica

PLANO DE ENSINO

Em caráter excepcional e transitório, para substituição do ensino presencial pelo ensino não presencial, enquanto durar a pandemia do novo coronavírus (COVID-19), em atenção à Portaria MEC No 544, de 16 de junho de 2020, à Resolução Normativa No 140/2020/CUn, de 21 de julho de 2020, à Portaria Normativa No 379/2020/GR, de 9 de novembro de 2020, e à Resolução Nº 30/2020/CUn, de 1° de dezembro de 2020.

EMC6716 – Materiais Poliméricos

1) Identificação

Carga horária: 72 horas-aula, das quais: Teóricas: 48 horas-aula, Práticas: 24 horas-aula.

Turma(s): 03236

Nome(s) do(s) professor(es): Gean Vitor Salmoria, Email: gean.salmoria@ufsc.br

Período: 2º semestre de 2020

2) Cursos

236 Engenharia de Materiais - Semestral

3) Requisitos

Engenharia de Materiais (236): (EMC6711 e QMC6118)

4) Ementa

Definição e aplicações de materiais poliméricos, desenvolvimento de produtos, nomenclatura, classificação e síntese de polímeros, estrutura e morfologia, estado sólido amorfo e cristalino, propriedades químicas e físicas, blendas, copolímeros, aditivos, compósitos, processamento e reciclagem de polímeros.

5) Objetivos

Geral:

Apresentar as noções básicas sobre materiais poliméricos capacitando os alunos a conhecer aplicações, propriedades, morfologia, composição e estrutura química, habilitando-os participar de equipes de projeto e desenvolvimento de produtos poliméricos.

Específicos:

1. Apresentar os conceitos fundamentais de química de polímeros.

- 2. Capacitar o aluno a analisar a correlação entre estrutura química, morfologia, composição e propriedades de materiais poliméricos.
- 3. Capacitar o aluno a apresentar soluções em produtos poliméricos baseado em conhecimentos sobre estrutura e propriedades dos materiais, requisitos do produto, condições de processamento e uso do material no produto.

6) Conteúdo Programático

- 1. Fundamentos em Química Orgânica para polímeros [8 horas-aula]
 - histórico, estrutura atômica e molecular
 - ligações e reações químicas
- 2. Introdução a polímeros [12 horas-aula]
 - definição e aplicações de materiais poliméricos
 - desenvolvimento de produtos e processos
 - estudo de caso: materiais poliméricos em automóveis
 - nomenclatura e classificação
 - síntese de polímeros
- 3. Estrutura e morfologia dos polímeros [8 horas-aula]
 - distribuição de massa molecular
 - taticidade, conformação e configuração
 - fases cristalina e amorfa: vítreo, borrachoso e liquido viscoso
- 4. Propriedades dos polímeros [12 horas-aula]
 - propriedades químicas
 - propriedades físicas
 - propriedades térmicas
 - propriedades eletromagnéticas
 - propriedades mecânicas e reológicas
 - propriedades biológicas
- 5. Tópicos em polímeros [8 horas-aula]
 - blendas
 - copolímeros
 - aditivos
 - compósitos
- 6. Processamento e Reciclagem de polímeros [4 horas-aula]
 - Transformação, moldagem e tratamentos
 - Princípios de reciclagem

7) Metodologia

Os aspectos teóricos da disciplina serão abordados ao longo do semestre com **ferramentas síncronas**, em aulas expositivas, assim como com **ferramentas assíncronas**, através de trabalhos em grupo, leitura e discussão de textos pertinentes.

Notas de esclarecimento:

- As aulas síncronas ocorrerão no horário oficial da disciplina.
- O link para as aulas síncronas será fornecido no MOODLE.
- As atividades assíncronas serão disponibilizadas através do MOODLE, com o suporte de material de apoio em meio digital.
- O atendimento individual para sanar dúvidas ocorrerá em encontros síncronos, nas datas e formas descritas no MOODLE.
- Haverá um monitor para a disciplina que atenderá em encontros síncronos, nas datas e formas descritas no MOODLE.
- Não será permitido gravar, fotografar ou copiar as aulas disponibilizadas no MOODLE. O uso não autorizado de material original retirado das aulas constitui contrafação violação de direitos autorais conforme a Lei nº 9.610/98 Lei de Direitos Autorais.
- As aulas síncronas poderão ser gravadas para gerar conteúdo a ser disponibilizado de forma assíncrona.

8) Avaliação

3 provas (P1, P2 e P3) sobre o conteúdo do programa, 1 trabalho prático (T1), seminários sobre artigos especializados e participação em aula (S1).

Ocorrerá através de 5 (quatro) componentes, a saber: 3 provas (P1, P2 e P3), 1 trabalho escrito (T1), e 1 seminário (S1). A média final (MF) será calculada pela média ponderada destas avaliações, respectivamente, ou seja:

$$MF = (P1 + P2 + P3 + T1 + S1) / 5$$

Conforme parágrafo 2° do artigo 70 da Resolução 17/CUn/97, o aluno com frequência suficiente (FS) e média final no período (MF) entre 3,0 e 5,5 terá direito a uma nova avaliação ao final do semestre (REC), sendo a nota final (NF) calculada conforme parágrafo 3° do artigo 71 desta resolução, ou seja: NF = (MF + REC) / 2.

9) Cronograma

- 1. As **aulas síncronas** serão realizadas nas segundas feiras, entre 08h30min e 10h00min; e nas quintas-feiras, entre 10h10min e 11h50min.
- 2. As **aulas síncronas** serão realizadas no seguinte cronograma:
 - 2.1 Fundamentos em Química Orgânica para polímeros [2 semanas]
 - 2.2 Introdução a polímeros [3 semanas]
 - 2.3 Estrutura e morfologia dos polímeros [2 semanas]

- 2.4 Propriedades dos polímeros [3 semanas]
- 2.5 Tópicos em polímeros [2 semanas]
- 2.6 Processamento e Reciclagem de polímeros [2 semanas]
- 3. A **avaliação** P1 será realizada em 2 aulas logo após o conteúdo de "Introdução a química de polímeros".
- 4. O **trabalho em grupo T1** será realizado em 8 aulas logo após o conteúdo de "Introdução a polímeros".
- 5. A **avaliação** P2 será realizada em 2 aulas logo após o conteúdo de "Estrutura e morfologia de polímeros".
- 6. A **avaliação** P3 será realizada em 2 aulas logo após o conteúdo de "Processamento e reciclagem de polímeros".
- 7. Os seminários serão apresentados durante as 14ª e 15ª semanas, em datas a ser definidas para cada grupo.

10) Bibliografia Básica

- G. V. Salmoria, Apostila de Materiais Poliméricos, Engenharia de Materiais UFSC, 2018.

11) Bibliografia Complementar

- Wikipidia, Free online Encyclopidia, In english.
- - S. V. Canevarolo; Ciência dos Polímeros, Ed. Artliber, SP, 2001.
- H. Belofsky; Plastics: Product Design and Process Engeneering, Hanser publishers, Munich, 1995.
- M. Chanda, S.K. Roy; Plastic Polimers Handbook, Marcel Dekker Inc., New York, 1986.
- M.D. Baijal; Plastic Polymer Science and Technology, Wiley Interscience Publication, John Wiley and Sons, New York, 1982.
- W. Michaeli, H. Greif, H. Kaufnnann, F.J. Vosseburger; Tecnologia de Plásticos, Edgar Blucher Ltda, São Paulo, 1995.
- E.F.Lucas, B.G.Soares, E.Monteiro, Caracterização de Polímeros.
- S.R. Sandler, W. Karo; Polymer Syntheses, vol. 1, Academic Press, New York, 1992.
- K.J.Sauders, Organic Polymer Chemistry, Chapman and Hall, New York, 1988.
- D.R. Paul, S. Newman; Polymer Blends, Acad. Press Inc., San Diego, 1978.

- N.A.J. Platzer; Plasticization and Plastic. Processes, ACS, Philadelphia, April 6-7, 1964Russel;
- Química Geral, McGraw-Hill, São Paulo, 1982.
- N, Alinger; Química Orgânica, segunda Ed., Guanabara, 1976.
- T. W. G. Solomons; Orgânic Chemistry, 5ª edição, John Wiley & Sons. New York, 1996.
- R. Morrison, R. Boyd; Química Orgânica, 13ª ed., Fund. Calouste Gulbenkian, Lisboa, 1996.
- O. Alcides Ohlweiller; Química Analítica Quantitativa, 3ª ed., 1982, Livros Téc. e Científicos.
- D.F. Shriver, P.W. Atkins; Inorganic Chemistry, Oxford University Press, Oxford, 1999.
- F. Cotton, A. Wilkinson, Geoffrey; Química Inorgânica., Livro Téc. e Científicos , RJ,1978.